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1. Introduction

The Hubbard model was introduced in order to study strongly correlated electrons [5, 6]

and has been used to describe the Mott metal-insulator transition [7, 8], high Tc super-

conductivity [9, 10] and chemical properties of aromatic molecules [11]. Since then, it has

been widely studied, essentially due to its connection with condensed matter physics. The

literature on the Hubbard model being rather large, we do not aim at being exhaustive

and rather refer to the books [3, 4] and references therein. Exact results have been mostly

obtained in the case of the one-dimensional model, which enters the framework of our

study. In particular, the 1D model has been solved by means of the Bethe ansatz in the
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celebrated paper by Lieb and Wu [12]. However, the set of eigenfunctions considered there

was incomplete, and a complete set of eigenstates was constructed in [13] using the SO(4)

symmetry of the 1D Hubbard Hamiltonian.

Although the Hubbard model certainly exhibits fascinating features among integrable

systems, the understanding of the model within the framework of the quantum inverse

scattering method appeared only in the mid eighties. The R-matrix of the Hubbard model

was first constructed by Shastry [14, 15] and Olmedilla et al. [16], by coupling (decorated)

R-matrices of two independent XX models, through a term depending on the coupling

constant U of the Hubbard potential. The proof of the Yang-Baxter relation for the

corresponding R-matrix was given by Shiroishi and Wadati [17]. The construction of the

R-matrix was then generalised in the gl(N) case by Maassarani et al., first for the XX

model [18] and then for the gl(N) Hubbard model [19, 20]. Within the QISM framework,

the eigenvalues of the transfer matrix of the Hubbard model were found using the algebraic

Bethe ansatz together with certain analytic properties in [21 – 23].

One of the main motivations for the present study of the Hubbard model and its

generalisations is the fact that it has recently appeared in the context of N = 4 super

Yang-Mills theory in two distinct ways. Firstly, it was noticed in [24] that the Hubbard

model at half-filling, when treated perturbatively in the coupling, reproduces the long-

ranged integrable spin chain of [25] as an effective theory. It thus provides a localisation of

the long-ranged spin chain model and gives a potential solution to the problem of describing

interactions which are longer than the length of the spin chain. The Hamiltonian of this

chain was conjectured in [25] to be an all-order description of the dilatation operator of

N = 4 super Yang-Mills in the su(2) subsector. That is, the energies of the spin chain are

conjectured to be the anomalous dimensions of the gauge theory operators in this subsector.

In relation to this, an interesting approach to the Hubbard model is given in [26] that leads

to the evaluation of energies for the antiferromagnetic state and allows one to control

the order of the limits of large coupling and large length of the operators/large angular

momentum.

The Hubbard model has also arisen in a slightly different way in the context of N = 4

super Yang-Mills (SYM). Following reasoning developed in [27], the long range spin chain

describing N = 4 super Yang-Mills theory can be described in terms of scattering of

momentum-carrying excitations (at least in the limit of very long operators or chains).

Under the assumption of integrability, this scattering is governed by a two particle scat-

tering matrix which is essentially determined up to an overall phase factor by su(2|2)

symmetry [28]. This phase factor was introduced in [29] where its importance for matching

with data from the string theory regime was discussed. In a recent paper [30] it has been

shown that the S-matrix thus derived satisfies the Yang-Baxter relation (or a twisted ver-

sion, see [31]) and in fact is proportional to the tensor product of two copies of Shastry’s

R-matrix [14, 15]. The undetermined dressing phase of the S-matrix can be constrained

by appealing to crossing-symmetry [32]. A proposal for its complete form was given in [33]

based on an earlier guess [34] and conjectures for the form of the string Bethe ansatz [35].

The non-triviality of the dressing phase leads to modifications of the proposal of [25] at

four loops and beyond. Following the suggestion of [33] this leads to transcendental contri-
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butions to the anomalous dimensions and thus (presumably) to some modification of the

underlying Hubbard model of [24].

An interesting common feature of these observations is the relation of the Hubbard

model coupling to the Yang-Mills coupling. This raises the possibility that there may be

some integrable extension of the Hubbard model which contains both elements as part of

a larger description of N = 4 super Yang-Mills theory. We will not construct such a model

here but we will discuss a general approach to constructing a number of supersymmetric

Hubbard models. Each of these models can be treated perturbatively and thus gives rise

to an integrable long-ranged spin chain as an effective theory.

Other supersymmetric generalisations of the Hubbard model have been constructed,

see e.g. [36, 37]. These approaches mainly concern high Tc superconductivity models and

their relation with the t−J model. They essentially use the gl(1|2) or gl(2|2) superalgebras,

which appear as the symmetry algebras of the Hamiltonian of the model. Our approach

however is different and is based on the QISM framework. It ensures the integrability of

the model and allows one to obtain local Hubbard-like Hamiltonians for general gl(N |M)

superalgebras. They can be interpreted in terms of ‘electrons’ after a Jordan-Wigner

transformation.

The plan of the paper is as follows. In section 2, we define supersymmetric XX models

whose R-matrices are based on the unitary series gl(N |M). We introduce the corresponding

Hamiltonians and determine the symmetry of the model. In section 3, we construct the

associated Hubbard-type model, mimicking the Shastry and Maassarani construction. We

prove the Yang-Baxter relation for the super Hubbard R-matrix, which allows us to define

the monodromy and transfer matrices. The symmetry of the super Hubbard model based on

gl(N |M) is shown to be gl(N−1|M−1)⊕gl(1|1)⊕gl(N−1|M−1)⊕gl(1|1). In section 4, we

give some examples, writing explicitly the Hamiltonians in the gl(2|2), gl(1|2) and gl(4|4)

cases. In the first two cases, we also perform a second order perturbation computation

à la Klein and Seitz [38] and note a relation with the spectrum of the effective two-site

Hamiltonian with the dilatation operator in the su(1|2) sector of N = 4 SYM.

2. Super XX models based on gl(N |M)

We follow the construction given in [18, 23], extending it to the case of superalgebras. In

the following, we note K = N + M .

We will use the standard auxiliary space notation, i.e. to any matrix A ∈ End(CK), we

associate the matrices A1 = A⊗I and A2 = I⊗A in End(CK)⊗End(CK). More generally,

when considering equalities in End(CK)⊗k, we take Aj , j = 1, . . . , k to act trivially in all

spaces End(CK), but the jth one.

To deal with superalgebras, we will also need a Z2 grading [.] on indices j, such that

[j] = 0 will be associated to bosons and [j] = 1 to fermions. Accordingly, the elementary

matrices Eij (with 1 at position (i, j) and 0 elsewhere) will have grade [Eij ] = [i]+ [j]. The
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grading we use is given by

[j] =

{
0 for 1 ≤ j ≤ N,

1 for N < j ≤ N + M.
(2.1)

2.1 R-matrix

The R-matrix of the gl(N |M) XX model is defined as:

R12(λ) = Σ12 P12 + Σ12 sin λ + (I ⊗ I − Σ12)P12 cos λ (2.2)

where P12 is the permutation operator,

P12 =

K∑

i,j=1

(−1)[j] Eij ⊗ Eji (2.3)

and Σ12 is built from projection operators

Σ12 = π1 π̃2 + π̃1 π2 with π =
∑

j 6=N,K

Ejj , π̃ = I − π = ENN + EKK . (2.4)

It is easy to show that Σ12 is also a projector, Σ2
12 = Σ12.

Let us introduce the diagonal matrix C:

C =
∑

j 6=N,K

Ejj − ENN − EKK = π − π̃ . (2.5)

This matrix obeys C2 = I and is related to the R-matrix through the equalities

Σ12 =
1

2
(1 − C1C2) and I ⊗ I − Σ12 =

1

2
(1 + C1C2) . (2.6)

One has

Theorem 1. The matrix (2.2) satisfies the following properties:

– C-invariance:

C1 C2 R12(λ) = R12(λ)C1 C2 (2.7)

– C-parity:

R12(−λ) = C1 R12(λ)C2 (2.8)

– Symmetry:

R12(λ) = R21(λ) (2.9)

– Unitarity:

R12(λ)R21(−λ) = (cos2 λ) I ⊗ I (2.10)

– Regularity:

R12(0) = P12 (2.11)
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– Exchange relation:

R12(λ)R21(µ) = R12(µ)R21(λ) (2.12)

– Yang-Baxter equation (YBE):

R12(λ12)R13(λ13)R23(λ23) = R23(λ23)R13(λ13)R12(λ12) where λij = λi − λj .

(2.13)

– Decorated Yang-Baxter equation (dYBE):

R12(λ
′
12)C1 R13(λ13)R23(λ

′
23) = R23(λ

′
23)R13(λ13)C1 R12(λ

′
12) with λ′

ij = λi+λj .

(2.14)

Proof. C-invariance, C-parity, symmetry, unitarity relation, regularity and exchange rela-

tion follow from a direct calculation, using the properties

C2 = I ; C1 Σ12 = Σ12 C1 = −Σ12 C2 = −C2 Σ12 . (2.15)

The decorated Yang-Baxter equation is a consequence of the Yang-Baxter equation and the

invariance property. Indeed, the Yang-Baxter equation reads, with the change of variable

λ2 → −λ2,

R12(λ
′
12)R13(λ13)R23(−λ′

23) = R23(−λ′
23)R13(λ13)R12(λ

′
12) . (2.16)

Using the antisymmetry property (2.8), one gets

R12(λ
′
12)R13(λ13)C2 R23(λ

′
23)C3 = C2 R23(λ

′
23)C3 R13(λ13)R12(λ

′
12) . (2.17)

Multiplying this last equation by C1 C2 on the left and by C3 on the right, and using the

invariance property (2.7), one obtains (2.14). It remains thus to show the YBE.

To prove YBE, one evaluates the difference l.h.s. − r.h.s. of (2.13). One notes first

that the terms in Σab, ΣabPab and (I⊗ I−Σab)Pab alone satisfy the Yang-Baxter equation.

The expression is further simplified using the fact that Σab is a projector and ordering all

terms with the Σ’s on the left and the P ’s on the right. One is left, after some algebra and

the use of standard trigonometric relations, with only two terms:

α1

(
(Σ12Σ13 + Σ12Σ23 − Σ12)P12P13 − (Σ12Σ23 + Σ13Σ23 − Σ23)P12P23

)
(2.18)

α2

(
Σ12 − Σ23 − Σ12Σ13 + Σ13Σ23

)
P13 (2.19)

where α1 = sinλ12 cos λ13 + cos λ13 sin λ23 − cos λ12 sin λ13 cos λ23 and α2 = sin λ12(1 −

cos λ13) sin λ23. A direct calculation of these two terms gives identically zero thanks to the

relation Σ12 = 1
2(1 − C1C2). This ends the proof of YBE.
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Special case of gl(1|1). In the case of gl(1|1) the above construction leads to a trivial

R-matrix, because there is no index j such that j 6= N,K. However, one can check that

modifying the definitions of the projectors and C according to

π = E11 ; π̃ = I − π = E22 ; C = π − π̃ (2.20)

all the properties remain valid. The R-matrix keeps the same form (2.2), with Σ12 defined

as in (2.4). We will use this R-matrix for this particular case. Explicitly, one has

R(λ)=E21 ⊗ E12 − E12 ⊗ E21 + sin(λ) (E11 ⊗ E22 + E22 ⊗ E11)

+ cos(λ) (E11 ⊗ E11 + E22 ⊗ E22) . (2.21)

2.2 Monodromy and transfer matrices

From the R-matrix, one constructs the (L sites) monodromy matrix

L0<1...L>(λ) = R01(λ)R02(λ) · · ·R0L(λ) (2.22)

which obeys the relation

R00′(λ − µ)L0<1...L>(λ)L0′<1...L>(µ) = L0′<1...L>(µ)L0<1...L>(λ)R00′(λ − µ) . (2.23)

This relation allows us to construct an (L sites) integrable XX spin chain through the

transfer matrix

t1...L(λ) = tr0 L0<1...L>(λ) = tr0

(
R01(λ)R02(λ) · · ·R0L(λ)

)
, (2.24)

where tr0 is the supertrace in auxiliary space 0. Indeed, the relation (2.23) implies that

the transfer matrices for different values of the spectral parameter commute

[t1...L(λ) , t1...L(µ)] = 0 . (2.25)

Then, the XX-Hamiltonian is defined by

H = t1...L(0)−1 t′1...L(0) (2.26)

where the prime ′ denotes the derivative w.r.t. λ. Since the R-matrix is regular, H is local:

H =
L∑

j=1

Hj,j+1 with Hj,j+1 = Pj,j+1 R′
j,j+1(0) = Pj,j+1 Σj,j+1 (2.27)

where we have used periodic boundary conditions, i.e. identified the site L + 1 with the

site 1. Explicitly, the two-site Hamiltonian reads

Hj,j+1 =
∑

i6=N,K

[
EiN ⊗ ENi − EiK ⊗ EKi + (−1)[i]

(
ENi ⊗ EiN + EKi ⊗ EiK

)]
. (2.28)
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2.3 Symmetry of super XX models

Starting from a general K×K matrix M generating (a representation of) the superalgebra

gl(N |M), a direct calculation shows that for

M = π Mπ + π̃M π̃ ∈ gl(N − 1|M − 1) ⊕ gl(1|1) (2.29)

we have

(M1 + M2)R12(λ) = R12(λ) (M1 + M2) . (2.30)

In words, the R-matrix admits a gl(N − 1|M − 1)⊕ gl(1|1) symmetry superalgebra whose

generators have the form

Ejk , j, k 6= N,K for gl(N − 1|M − 1)

ENN ; ENK ; EKN ; EKK for gl(1|1) .
(2.31)

Let us remark en passant that the associated symmetry group is in fact a supergroup, i.e.

parameters entering the group generators have to be graded according to the grading of the

superalgebra. This does not affect the ‘bosonic’ subgroup GL(N −1)⊗GL(M−1)⊗U(1)⊗

U(1), but the (other) ‘fermionic’ generators need to have Grassmann valued parameters.

Note that C-invariance is just a particular case of the above (bosonic) symmetry group.

As a consequence, the transfer matrix also admits gl(N −1|M −1)⊕gl(1|1) symmetry

superalgebra, where the generators are given by

M<1...L> = M1 + M2 + . . . + ML, (2.32)

where M is one of the generators given in (2.31). The same is true for any Hamiltonian H

built on the transfer matrix.

The remaining generators which would allow one to enlarge the symmetry to a gl(N |M)

superalgebra are given by

V = πM π̃ + π̃ Mπ generated by EjN ; EjK ; ENj ; EKj , j 6= N,K . (2.33)

They obey

V C = −C V so that V1 Σ12 + Σ12 V1 = V1 ; V2 Σ12 + Σ12 V2 = V2 . (2.34)

This proves that

(V1 + V2)R12(λ) = R̃12(λ) (V1 + V2) (2.35)

where R̃12(λ) is deduced from R12(λ) by exchanging Σ12 and I ⊗ I − Σ12. Hence, V is not

associated to a symmetry of the R-matrix in the usual way.

Note however that we have the relation

V1 V2 R12(λ) = R12(λ)V1 V2 . (2.36)

It induces a gl(N |M) symmetry superalgebra for the XX Hamiltonian, with generators

M1 ·M2 · · ·ML, where M = Ejk, 1 ≤ j, k ≤ K. Unfortunately, the action of the generators

on the Hamiltonian eigenvectors is identically zero, except on the pseudo-vacuum. This

symmetry thus yields no information.

– 7 –
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2.4 Generalisations

One can construct a more general R-matrix, defined by

R12(λ; q1, q2, ǫ1, ǫ2) = Σ̂12(q1, q2, ǫ1, ǫ2) sin λ +
(
Σ12 + (I ⊗ I − Σ12) cos λ

)
P12 (2.37)

where

Σ̂12(q1, q2, ǫ1, ǫ2) =
∑

j<N

{
q1ENN ⊗Ejj+

1

q1
Ejj⊗ENN +q2EKK⊗Ejj+

1

q2
Ejj⊗EKK

}

+
∑

N<j<K

{
ǫ1

(
q1ENN ⊗ Ejj +

1

q1
Ejj ⊗ ENN

)

+ǫ2

(
q2EKK ⊗ Ejj +

1

q2
Ejj ⊗ EKK

)}

(2.38)

The parameters q1, q2 are complex numbers, while ǫ1, ǫ2 take values in {−1, 1}. One has

Σ̂12(1, 1, 1, 1) = Σ12

Σ̂12(q1, q2, ǫ1, ǫ2) Σ̂12(p1, p2, µ1, µ2) = Σ̂12(q1p1, q2p2, ǫ1µ1, ǫ2µ2) .

Note that only Σ12 is a projector.

It can be checked that the theorem 1 is also valid for the R-matrix (2.37), except for

the symmetry (2.9) which now reads

R21(λ; q1, q2, ǫ1, ǫ2) = R12

(
λ;

1

q1
,

1

q2
, ǫ1, ǫ2

)
. (2.39)

In fact, R12(λ; q1, q2, ǫ1, ǫ2) is the (Drinfeld) twist of R12(λ; 1, 1, 1, ǫ1ǫ2):

D1 R12(λ; q1, q2, ǫ1, ǫ2)D−1
2 = R12(λ; 1, 1, µǫ1, µǫ2)

with D =
1

q1
ENN +

1

q2
EKK +

∑

j<N

Ejj + µ
∑

N<j<K

Ejj . (2.40)

Since D belongs1 to the group SU(N)⊗SU(M), the properties proved above (in particular

the Yang-Baxter equation) remain valid for the matrix R12(λ; q1, q2, ǫ1, ǫ1). In the same

way, it is sufficient to work with the matrix R12(λ; 1, 1, 1,−1) to get the properties of

the matrices R12(λ; q1, q2, ǫ1,−ǫ1), so that there are essentially two different solutions,

corresponding to the cases ǫ1 = ǫ2 and ǫ1 = −ǫ2, hence defining two classes of super XX

spin chains. Below, we will focus on the R-matrix built on Σ12.

3. Super-Hubbard models based on gl(N |M)

We use the R-matrices defined above to build generalisations of the Hubbard model. The

usual Hubbard model is obtained when we specialise to the case of gl(1|1). We will use the

results given in [4], generalising them to the case of superalgebras.

1Strictly speaking it is
“

µM−1

q1q2

” 1

K

D which belongs to this group.
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3.1 R-matrix for super Hubbard models

One introduces the R-matrix of the super Hubbard model as the coupling of two super XX

models, according to

R<12><34>(λ1, λ2) = R13(λ12)R24(λ12) +
sin(λ12)

sin(λ′
12)

tanh(h′
12)R13(λ

′
12)C1R24(λ

′
12)C2 (3.1)

where again λ12 = λ1 − λ2 and λ′
12 = λ1 + λ2. The definition of the parameter h′

12 =

h(λ1) + h(λ2) is given below. It is easy to show that this R-matrix is symmetric

R<12><34>(λ1, λ2) = R<34><12>(λ1, λ2) , (3.2)

regular

R<12><34>(λ1, λ1) = P<12><34> = P13 P24 (3.3)

and obeys the unitarity relation

R<12><34>(λ1, λ2)R<34><12>(λ2, λ1) =

(
cos4(λ12)−

(
sin(λ12)

sin(λ′
12)

tanh(h′
12)

)2)
I<12>⊗I<34>

where I<12> = I ⊗ I . (3.4)

Property 1. When the function h(λ) is given by sinh(2h) = U sin(2λ) for some (free)

parameter U , the R-matrix (3.1) obeys YBE:

R<12><34>(λ1, λ2)R<12><56>(λ1, λ3)R<34><56>(λ2, λ3)

= R<34><56>(λ2, λ3)R<12><56>(λ1, λ3)R<12><34>(λ1, λ2) . (3.5)

In that case, the coefficient in (3.4) can be rewritten as

cos2(λ12)

(
cos2(λ12) −

(
tanh(h12)

cos(λ′
12)

)2
)

(3.6)

where h12 = h(λ1) − h(λ2).

Proof. We use a generalisation to superalgebras of the proof by Shiroishi [39], following

the proof for algebras presented in [4]. The starting point is the use [47] of the following

tetrahedral relation [46]:

Ra
12 Rb

13 Rc
23 =

1∑

d,e,f=0

Sabc
def R

f
23 Re

13 Rd
12 , ∀ a, b, c = 0, 1 (3.7)

where R0
jk = Rjk(λj − λk), R1

jk = Rjk(λj + λk)Cj and the R-matrix is given by (2.2). The

non-vanishing entries of the matrix S are given by

S
0,0,0
0,0,0 = 1 ;

S
1,1,0
1,1,0 = 1 ; S

0,1,1
0,1,1 = 1 ; S

1,0,1
1,0,1 = 1

S
1,0,0
0,0,1 = V (λ1, λ2,−λ3) ; S

1,0,0
0,1,0 = W (λ1, λ2,−λ3) ; S

1,0,0
1,1,1 = U(λ1, λ2,−λ3)

S
0,1,0
0,0,1 = U(λ1,−λ2, λ3) ; S

0,1,0
1,0,0 = W (λ1,−λ2, λ3) ; S

0,1,0
1,1,1 = V (λ1,−λ2, λ3)

S
0,0,1
0,1,0 = U(−λ1, λ2, λ3) ; S

0,0,1
1,0,0 = V (−λ1, λ2, λ3) ; S

0,0,1
1,1,1 = W (−λ1, λ2, λ3)

S
1,1,1
0,0,1 = W (λ1, λ2, λ3) ; S

1,1,1
0,1,0 = V (λ1, λ2, λ3) ; S

1,1,1
1,0,0 = U(λ1, λ2, λ3)

(3.8)
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with

U(λ1, λ2, λ3) = −
cos(λ′

13) sin(λ′
23)

sin(λ13) cos(λ23)
; V (λ1, λ2, λ3) = −

sin(λ′
12) sin(λ′

23)

sin(λ12) sin(λ23)
;

W (λ1, λ2, λ3) =
sin(λ′

12) cos(λ′
13)

sin(λ12) cos(λ13)
; λjk = λj − λk ; λ′

jk = λj + λk , j, k = 1, 2, 3 . (3.9)

One needs also the relations:

R1
23 R1

13 R1
12 = −

sin(λ′
13) cos(λ′

23)

sin(λ13) cos(λ23)
R0

23 R0
13 R1

12 +
cos(λ′

12) cos(λ′
23)

cos(λ12) cos(λ23)
R0

23 R1
13 R0

12

+
cos(λ′

12) sin(λ′
13)

cos(λ12) sin(λ13)
R1

23 R0
13 R0

12; (3.10)

R0
23 R0

13 R0
12 = −

sin(λ13) cos(λ23)

sin(λ′
13) cos(λ′

23)
R1

23 R1
13 R0

12 +
cos(λ12) cos(λ23)

cos(λ′
12) cos(λ′

23)
R1

23 R0
13 R1

12

+
cos(λ12) sin(λ13)

cos(λ′
12) sin(λ′

13)
R0

23 R1
13 R1

12 . (3.11)

It is easy to prove, using for instance a symbolic computer program [40], that all these

relations hold for the R-matrix (2.2), provided C2
j = 1 and P12 is a (super) permutation

operator.

Then, the end of the proof is similar to the algebra case: a direct (but lengthy)

calculation shows that the matrix

R<12><34>(λ1, λ2) = R13(λ12)R24(λ12) + α(λ1, λ2)R13(λ
′
12)R24(λ

′
12)C1 C2 (3.12)

obeys YBE provided the matrix R12(λ) obeys theorem 1, relations (3.7) and (3.10)–(3.11),

and α(λ1, λ2) is given by

α(λ1, λ2) =
cos(λ1 − λ2) sinh(h1 − h2)

cos(λ1 + λ2) cosh(h1 + h2)
, (3.13)

where hj = h(λj), j = 1, 2 is defined by sinh(2h) = U sin(2λ) ; see [4] for more details.

3.2 Monodromy matrices, transfer matrices and Hamiltonians

We remind the reader of the usual proof of integrability for models based on transfer

matrices. Let Rab(λ1, λ2) be an R-matrix obeying YBE, and being regular (Rab(λ, λ) =

Pab). a and b denote the ‘coupled’ spaces (a, b =< 12 >,< 34 > in the above cases). From

YBE, one deduces that the monodromy matrix

La<b1...bL>(λ1, λ2) = Rab1(λ1, λ2) . . .RabL
(λ1, λ2) (3.14)

obeys

Raa′(λ1, λ2)La(λ1, λ3)La′(λ2, λ3) = La′(λ2, λ3)La(λ1, λ3)Raa′(λ1, λ2) (3.15)
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where the dependence in the quantum spaces b1, . . . , bL has been omitted in L. This relation

proves that one can define a transfer matrix

t̃(λ1, λ3) = tra La(λ1, λ3) (3.16)

which obeys

[t̃(λ1, λ3) , t̃(λ2, λ3)] = 0 . (3.17)

From the transfer matrix, one then deduces that all the Hamiltonians

H(µ) = t̃(0, µ)−1 ∂

∂λ
t̃(λ, µ)

∣∣∣∣
λ=0

(3.18)

define, for any λ, an integrable model, since we have

[H(µ), t̃(λ, µ)] = 0 , ∀λ . (3.19)

However, demanding further that the Hamiltonian be local, one is led (using the regularity

property) to specify µ = 0. One then gets

[H, t(λ)] = 0 , ∀λ , for H = H(0) = t(0)−1 t′(0) and t(λ) = t̃(λ, 0) .

The transfer matrix t(λ) is constructed from the ‘reduced’ monodromy matrix

La<b1...bL>(λ) = Rab1(λ, 0) . . .RabL
(λ, 0) . (3.20)

This ‘reduced’ monodromy matrix is just the one used to define the Hubbard model; one

can compute

R<12><34>(λ, 0) = R13(λ)R24(λ)
(

I ⊗ I + tanh(h)C1 C2

)
. (3.21)

Hence, it is the locality requirement that imposes the form of the monodromy matrix used

for the Hubbard model. More general (a priori non local) Hamiltonians can be defined

using the form (3.18).

The matricial form of the Hubbard-type Hamiltonian reads

H =

L∑

j=1

H<2j−1,2j><2j+1,2j+2> =

L∑

j=1

Ř′
<2j−1,2j><2j+1,2j+2>(0) (3.22)

with Řab = PabRab, Ř′
ab(0) =

d

dλ
Řab(λ, 0)

∣∣∣
λ=0

and

H<2j−1,2j><2j+1,2j+2>=Σ2j−1,2j+1P2j−1,2j+1+Σ2j,2j+2P2j,2j+2+
U

2

(
C2j−1C2j+C2j+1C2j+2

)

(3.23)

where we have used periodic boundary conditions, i.e. identified sites < 2L + 1, 2L + 2 >

with sites < 1, 2 >.

Remark 1. Let us remark that, due to the coupling of the two XX models, the total number

of sites is 2L, but the number of ‘coupled’ sites (which are the real physical ones) is L.

We will thus refer to the Hubbard Hamiltonian (3.22) as an L-site Hamiltonian. This is

consistent with the notation used after Jordan-Wigner transformation (see below).
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3.2.1 Gauged version of the super Hubbard model

In the literature [14, 19, 20], a gauged version of the Hubbard R-matrix is used. It is

defined by

R
g
<12><34>(λ1, λ2) = e

1

2
h1 C1C2 e

1

2
h2 C3C4 R<12><34>(λ1, λ2) e−

1

2
h1 C1C2 e−

1

2
h2 C3C4

where hj = h(λj) , j = 1, 2 (3.24)

By construction, R
g
<12><34>(λ1, λ2) also obeys YBE, and is unitary, symmetric and regular.

Following the same steps as before, we introduce the ‘reduced’ R-matrix

R
g
<12><34>(λ, 0) =

1

cosh(h)
I12(h)R13(λ)R24(λ) I12(h) , (3.25)

where

I12(h) = cosh

(
h

2

)
I ⊗ I + sinh

(
h

2

)
C1 C2 . (3.26)

It leads to the same Hamiltonian (3.22)–(3.23). This gauged version was originally intro-

duced to recover the exact form of Shastry’s R-matrix.

3.3 Symmetries

We generalise to superalgebras the results obtained for su(N) Hubbard models (see for

instance [19, 4]). For completeness, we compare them with the well-known symmetry of

the usual Hubbard model [11, 39].

Proposition 1. The transfer matrix of the Hubbard model admits a gl(N − 1|M − 1) ⊕

gl(1|1)⊕ gl(N −1|M −1)⊕ gl(1|1) symmetry algebra, each of the gl(N −1|M −1)⊕ gl(1|1)

corresponding to the symmetry of one XX model.

As a consequence this symmetry is also valid for the Hubbard Hamiltonian.

Proof. To prove this symmetry, it is sufficient to remark that

M C = C M (3.27)

where M is given in (2.29). Thus, one gets

[R<12><34>(λ, 0) , M1 + M3] = 0 = [R<12><34>(λ, 0) , M2 + M4] (3.28)

where R<12><34>(λ, 0) is the R-matrix of the Hubbard model.

As far as Hamiltonians are concerned, the generators of the symmetry have the form

Mevn =
L∑

j=1

M2j and Modd =
L∑

j=1

M2j−1 (3.29)

They generate a gl(N − 1|M − 1) ⊕ gl(1|1) ⊕ gl(N − 1|M − 1) ⊕ gl(1|1) superalgebra.

It is well-known that the Hubbard model possesses a gl(2)⊕gl(2), and thus it is natural

to look for a gl(N |M) ⊕ gl(N |M) symmetry algebra for the generalised Hubbard models.

Unfortunately, it seems not to be present. To discuss this point, we now review how the

so(4) symmetry algebra is obtained in the framework of the Hubbard model and point out

some properties which are valid only in this case.
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3.3.1 Enhancement of the symmetry for Hubbard model

As has been shown (originally in [11], see also [4]), the full symmetry of the periodic

Hubbard model (for finite L) can be obtained through a change of the Z2-grading. In the

present context, it amounts to consider the gl(1|1) superalgebra:2

Proposition 2. In the gl(1|1) case, the Hubbard R-matrix obeys

(V ±
12 − V ±

34)R<12><34>(λ1, λ2) = −R<12><34>(λ1, λ2) (V ±
12 − V ±

34) (3.30)

(W±
12 + W±

34)R<12><34>(λ1, λ2) = R<12><34>(λ1, λ2) (W±
12 + W±

34) (3.31)

where V ± = σ± ⊗ σ± and W± = σ± ⊗ σ∓.

These relations are not valid any more for a general gl(N |M) superalgebra for gen-

erators V = ENj ⊗ ENj , EKj ⊗ EKj, EjN ⊗ EjN or EjK ⊗ EjK and W = ENj ⊗ EjN ,

EKj ⊗ EjK , EjN ⊗ ENj or EjK ⊗ EKj.

Proof. Direct calculation. In particular, we checked that this relation does not hold for

gl(1|2).

Relations (3.30)–(3.31) are then enough to deduce the following corollary, proved in [4]:

Corollary 1. For gl(1|1), the Hamiltonian

H =
L∑

j=1

Ř′
<2j−1,2j><2j+1,2j+2>(0) (3.32)

possesses a gl(2) ⊕ gl(1) ⊕ gl(1) symmetry algebra when L is odd; this symmetry extends

to a gl(2) ⊕ gl(2) algebra when L is even.

The generators of this symmetry have the form

S
(V )
± =

L∑

j=1

(−1)j V ±
2j−1,2j and S

(W )
± =

L∑

j=1

W±
2j−1,2j , (3.33)

S(V )
z =

2L∑

j=1

Cj and S(W )
z =

L∑

j=1

(C2j−1 − C2j). (3.34)

3.3.2 Comparison with the ‘gl(2) Hubbard model’

We give here the counterpart of the section 3.3.1 when dealing with the gl(2) Hubbard

model, constructed using the transfer matrix approach.

Proposition 3. In the gl(2) case, the Hubbard R-matrix obeys

(V ±
12 C3C4 − V ±

34)R<12><34>(λ1, λ2) = −R<12><34>(λ1, λ2) (V ±
12 − C1C2 V ±

34) (3.35)

(W±
12 C3C4 + W±

34)R<12><34>(λ1, λ2) = R<12><34>(λ1, λ2) (W±
12 + C1C2 W±

34) (3.36)

where V ± = σ± ⊗ σ± and W± = σ± ⊗ σ∓.

These relations are not valid any more for a general gl(N) algebra for generators

V = ENj ⊗ ENj or EjN ⊗ EjN and W = ENj ⊗ EjN or EjN ⊗ ENj .

2It corresponds to the eR matrix in the notation of [4].
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Proof. A direct calculation shows that the relations

π̃1π̃2P13V
±
14 = π̃3π̃4P24V

±
14 ; π1π2P13V

±
41 = π1π2P24V

±
23 ; π1π̃2P23V

±
24 = π̃3π1P14V

±
12

π̃1π̃2P24W
±
32 = π̃3π̃2P13W

±
34 ; π1π2P13W

±
14 = π1π4P24W

±
34 ; π1π̃2P13W

±
14 = π1π̃2P24W

±
32

hold for gl(2), but not for the other (super)algebras. Using these relations, it is then

easy to deduce the relations (3.35)–(3.36). We also checked by direct calculation that the

relations (3.35)–(3.36) do not hold for gl(3).

Corollary 2. For gl(2), the Hamiltonians

H(λ1, λ2) =

L−1∑

j=1

Ř<2j−1,2j><2j+1,2j+2>(λ1, λ2) (3.37)

have a gl(2) ⊕ gl(2) symmetry algebra.

It implies the same symmetry for the non-periodic Hubbard Hamiltonian

Hn.p. =

L−1∑

j=1

Ř′
<2j−1,2j><2j+1,2j+2>(0) . (3.38)

Proof. Multiplying from the left by P13 P24, the relations (3.35)–(3.36) can be recast as

(V ±
12 − V ±

34 C1C2) Ř<12><34>(λ1, λ2) = Ř<12><34>(λ1, λ2) (V ±
12 − C1C2 V ±

34), (3.39)

(W±
12 + W±

34 C1C2) Ř<12><34>(λ1, λ2) = Ř<12><34>(λ1, λ2) (W±
12 + C1C2 W±

34) .(3.40)

It shows that the generators (again with V ± = σ± ⊗ σ± and W± = σ± ⊗ σ∓)

V ±
q =

L∑

j=1

(−1)j (C1 . . . C2j−2)V ±
2j−1,2j

= V ±
12 − C1C2 V ±

34 + C1C2C3C4 V ±
56 − C1C2C3C4C5C6 V ±

78 + . . . (3.41)

W±
q =

L∑

j=1

(C1 . . . C2j−2)W±
2j−1,2j

= W±
12 + C1C2 W±

34 + C1C2C3C4 W±
56 + C1C2C3C4C5C6 W±

78 + . . . (3.42)

commute with the above Hamiltonian (with no restriction on the parity of L). It is trivial

to check that they form a gl(2) ⊕ gl(2) algebra, with Cartan generators

S±
z =

L∑

j=1

(C2j−1 ± C2j). (3.43)

The Hamiltonians H(λ1, λ2) and Hn.p. are not periodic, since they do not contain

the term Ř<2L−1,2L><1,2>(λ1, λ2), which breaks the symmetry. Hence, Hn.p. does not

correspond to the usual Hubbard model. However, in the thermodynamical limit L → ∞,

the missing periodic term is sent to infinity, and one recovers the symmetry of the usual

Hubbard model.
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3.3.3 Jordan-Wigner transformation and periodicity

Anticipating the reminder of section 3.5 on Jordan-Wigner transformation [41], one is

tempted to associate the gl(2) construction of [14, 16] to the Hubbard model, but it is

well-known that, for algebras, the Jordan-Wigner transformation does not preserve the

periodic boundary condition [15] (see also [4]). Indeed, through this transformation, one

gets for instance

c
†
j cj+1 → E

(j)
12 E

(j+1)
21 , j = 1, 2, . . . (3.44)

where the superscript indicates the site to which the matrices belong, and the arrow denotes

the Jordan-Wigner transformation. From periodicity, one should thus get

c
†
L c1 → E

(L)
12 E

(1)
21 (3.45)

However, performing the Jordan-Wigner transformation, one gets

c
†
L c1 → E

(L)
12 E

(1)
21 (C1 · · ·CL−1) (3.46)

Hence, in the gl(2) case, the Hubbard Hamiltonian we obtain is non-periodic in terms of c

and c† (i.e. after Jordan-Wigner transformation).

When dealing with superalgebras, the Jordan-Wigner transformation is modified [4]

(see a reminder in section 3.5), and now respects the periodic boundary condition. Due to

this, we obtain the usual (periodic) Hubbard Hamiltonian in the case of gl(1|1).

In other words, for algebras, the Jordan-Wigner transformation needs to modify the

bosonic/fermionic character of some operators: this is done using (non-local) products

of Cj ≡ (1 − 2nj) generators which break the periodicity. For superalgebras, no change

of character is needed; the transformation is a local isomorphism, so that periodicity is

preserved. In this respect, the superalgebra case looks more natural than the algebraic

one.

These considerations are consistent with the results of sections 3.3.1 and 3.3.2 about

the symmetry of non-periodic gl(2) and periodic gl(1|1) Hubbard models.

3.4 Change of notation

The above presentation of the Hubbard model is based on the transfer matrix formalism,

the Hubbard model itself being obtained by coupling two independent XX models, hence

the notation used for the Hubbard Hamiltonian (3.22). In the following, we are dealing

with explicit expressions of this Hamiltonian in specific cases and we would like to make

contact with the notation commonly used in particular in the condensed matter community.

Therefore, we will perform a change of notation in the rest of the paper in order to stick

to more familiar expressions.

The construction of the Hubbard Hamiltonian, see eqs. (3.22)–(3.23), shows that one

considers a 2L site lattice on which live two independent XX models, the first one living

on the odd sites, the second one on the even sites. We introduce a map on the site labels

in such a way that the 2L site lattice of the coupled XX models is interpreted as a L site

lattice for the Hubbard model:

< 2j − 1, 2j > → j ↑ ⊗ j ↓ (j = 1, . . . , L) (3.47)
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the operators living on the odd (even) sublattice being labelled by ↑ (↓). With this notation,

the Hubbard Hamiltonian (3.22)–(3.23) reads

H =

L∑

j=1

Hj,j+1 with Hj,j+1=Σ↑,j,j+1P↑,j,j+1+Σ↓,j,j+1P↓,j,j+1+
U

2

(
C↑,jC↓,j+C↑,j+1C↓,j+1

)

(3.48)

where we used the periodicity conditions.

3.5 Jordan-Wigner transformation

Let us consider p sets of fermionic oscillators c
(q)
i , c

(q)†
i (i = 1, . . . , L and q = 1, . . . , p) that

satisfy the usual anticommutation relations

{c
(q)
i , c

(q′)†
j } = δij δqq′ {c

(q)
i , c

(q′)
j } = {c

(q)†
i , c

(q′)†
j } = 0 (3.49)

One defines the following matrix (where n
(q)
i = c

(q)†
i c

(q)
i is the usual number operator)

X
(q)
i =

(
1 − n

(q)
i c

(q)
i

c
(q)†
i n

(q)
i

)
. (3.50)

The entries X
(q)
i;αβ of this matrix have a natural grading given by [α] + [β] where [1] = 1

and [2] = 0.

In the gl(2p−1|2p−1) case, one defines at each site i the generators

Xi;α1...αp,α′
1
...α′

p
= (−1)sX

(1)
i;α1α′

1

. . . X
(p)
i;αpα′

p
where s =

p∑

a=2

[αa]

(
a−1∑

b=1

(
[αb] + [α′

b]
)
)

. (3.51)

It is easy to verify the following properties:

(
Xi;α1...αp,α′

1
...α′

p

)†
= Xi;α′

1
...α′

p,α1...αp
(3.52)

Xi;α1...αp,α′
1
...α′

p
Xi;β1...βp,β′

1
...β′

p
= δα′

1
β1

. . . δα′
pβp

Xi;α1...αp,β′
1
...β′

p
(3.53)

∑

α1,...,αp

Xi;α1...αp,α1...αp = 1 (3.54)

Xi;α1...αp,α′
1
...α′

p
Xj;β1...βp,β′

1
...β′

p
= (−1)gXj;β1...βp,β′

1
...β′

p
Xi;α1...αp,α′

1
...α′

p
(i 6= j) (3.55)

where g =

(
p∑

a=1

(
[αa] + [α′

a]
)
)(

p∑

b=1

(
[βb] + [β′

b]
)
)

.

The first three properties are local (on site) while the last one relates different sites.

They state that the Xi;α′
1
,...,α′

p,α1,...,αp
form an algebra isomorphic to the tensor product

of L copies of gl(2p−1|2p−1). The mapping X... → E... is known as a Jordan-Wigner

transformation. We observe that it can be uniquely defined once an entire line E
(i)
1α is

given; indeed, hermitian conjugation fixes the corresponding column so the full matrix can

be reconstructed in the following steps:

1. the element E
(i)
11 is associated to one of the 2p diagonal generators Xi;α1,...,αp,α1,...,αp ;
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2. the remaining 2p−1 − 1 bosonic generators are freely associated to the bosonic ones

E
(i)
1α , α = 2, . . . , 2p−1;

3. the 2p−1 fermionic generators are freely associated to the E
(i)
1α , α = 2p−1 + 1, . . . , 2p.

All specific realisations are isomorphic because they can be obtained one from the other

by exchanging lines and columns of the matrices. An example of such a mapping is given

in (4.2). The gl(N |M) cases that are not of the form gl(2p−1|2p−1) are “incomplete” and

can be obtained by embedding in the smallest algebra gl(2p−1|2p−1) such that N ≤ 2p−1 and

M ≤ 2p−1. Then, by removing an appropriate choice of lines and columns, one projects the

matrix Xi;α′
1
,...,α′

p,α1,...,αp
to a gl(N |M) subalgebra. This can be done in many inequivalent

ways and has been done in section 4.2 with the projector (4.24). In this sense, any gl(N |M)

Hamiltonian describes a sector contained in the larger gl(2p−1|2p−1) Hamiltonian’s space

of states.

4. Examples

4.1 gl(2|2) Hamiltonians

In the gl(2|2) case, the generators Xi;αβ,α′β′ at each site i are given by

Xi;αβ,α′β′ = (−1)([α]+[α′])[β] Xi;αα′ X ′
i;ββ′ . (4.1)

They are mapped on the Epq matrices with the following assignment of indices (α, β, α′, β′ =

1, 2 and p, q = 1 . . . 4):

11 → 1, 12 → 3, 21 → 4, 22 → 2 (4.2)

which respects the grading in the sense that if (αβ, α′β′) → (p, q), the grades of Xαβ,α′β′

and of Epq coincide.

Then the gl(2|2) XX Hamiltonian (2.27) reads as (the subscripts correspond to the

site indices):

H
gl(2|2)
XX =

L∑

i=1

(
c
†
i ci+1 + c

†
i+1ci

)(
c
′†
i c′i+1 + c

′†
i+1c

′
i + 1 − n′

i − n′
i+1

)
(4.3)

=

L∑

i=1

{
− c

′†
i c

†
i c

′
i+1ci+1 − c

′†
i+1c

†
i+1c

′
ici + c

†
i c

′†
i+1c

′
ici+1 + c

′†
i c

†
i+1cic

′
i+1

+
(
1 − n′

i − n′
i+1

)(
c
†
ici+1 + c

†
i+1ci

)}
. (4.4)

This Hamiltonian exhibits interesting features. First of all, the number of pairs (i.e. doubly

occupied sites with one unprimed and one primed particle) is conserved by the Hamiltonian,

so that one can restrict the study to sectors with a given number of pairs. The first two

terms of (4.4) correspond to a BCS-like conductivity in the physical space (pair hopping),

while the last term corresponds to ordinary conductivity (hopping for unprimed particles

with interaction with a background of primed particles). The middle term corresponds to

an exchange between the two types of particles.
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As explained in section 3, the Hubbard-type Hamiltonian (3.22) is obtained by coupling

two copies of XX Hamiltonians, with fermionic oscillators c
†
σ,i and cσ,i, σ =↑, ↓. Hence, one

gets for the gl(2|2) Hubbard Hamiltonian:

H
gl(2|2)
Hub =

L∑

i=1

{ ∑

σ=↑,↓

(
c
†
σ,icσ,i+1 + c

†
σ,i+1cσ,i

)(
c
′†
σ,ic

′
σ,i+1 + c

′†
σ,i+1c

′
σ,i + 1 − n′

σ,i − n′
σ,i+1

)

+ U(1 − 2n↑,i)(1 − 2n↓,i)

}
. (4.5)

The space of states at each site i is spanned by the vacuum |0〉i, the up states | ↑〉i, | ↑
′〉i,

| ↑↑′〉i, the down states | ↓〉i, | ↓
′〉i, | ↓↓

′〉i, and by tensoring the up states with the down

states, where |σ〉i ≡ c
†
σ,i|0〉i, |σ

′〉i ≡ c
′†
σ,i|0〉i and |σσ′〉i ≡ c

†
σ,ic

′†
σ,i|0〉i with σ =↑, ↓.

This Hamiltonian can be compared with the gl(4) Hubbard Hamiltonian which is given

by

H
gl(4)
Hub =

L∑

i=1

{ ∑

σ=↑,↓

(
c
†
σ,icσ,i+1c

′†
σ,ic

′
σ,i+1 + c

†
σ,i+1cσ,ic

′†
σ,i+1c

′
σ,i

+ n′
σ,in

′
σ,i+1(c

†
σ,icσ,i+1 + c

†
σ,i+1cσ,i) + nσ,inσ,i+1(c

′†
σ,ic

′
σ,i+1 + c

′†
σ,i+1c

′
σ,i)

)

+ U(1 − 2n↑,in
′
↑,i)(1 − 2n↓,in

′
↓,i)

}
, (4.6)

which is free of exchange terms.

It is of interest to make a perturbative calculation of the gl(2|2) Hubbard Hamilto-

nian (4.5) à la Klein and Seitz [38]. To this aim, one introduces the notation

Xij =
∑

σ=↑,↓

c
†
σ,icσ,j N

′
σ,ij (4.7)

where N ′
σ,ij = c

′†
σ,ic

′
σ,j + c

′†
σ,jc

′
σ,i + 1 − n′

σ,i − n′
σ,j . The Hamiltonian takes then the form

H
gl(2|2)
Hub =

L∑

i=1

(Xi,i+1 + Xi+1,i) + U

L∑

i=1

(1 − 2n↑,i)(1 − 2n↓,i) (4.8)

At large U , the potential term is the dominant one, while the X term can be treated as a

perturbation. From the form of the potential term, one is led to define a projector Π0 on

singly occupied states with unprimed particles (i.e. |↑〉 or |↓〉), without any limitations on

the primed particles:

Π0 =
L∏

i=1

(n↑,i − n↓,i)
2 . (4.9)

Then, one can easily check that X
†
ij = Xji and that Π0 fulfills the following conditions:

Π0XijΠ0 = 0 , (1 − Π0)XijXjiΠ0 = 0 , Π0Xi,i+1Xi+1,i+2Π0 = 0 . (4.10)
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Note that the ‘dressing’ factors N ′
σ,ij play no role in the derivation of these relations

since Π0 and N ′
σ,ij commute. It follows that the effective Hamiltonian at second order

of perturbation (the first order is vanishing) is given by

H
(2)
eff = −

1

2U

L∑

i=1

Π0(Xi,i+1Xi+1,i + Xi+1,iXi,i+1)Π0 (4.11)

After some simple algebra, one finally gets

H
(2)
eff = −

1

U

L∑

i=1

Π0

[(
1

2
− 2Sz

i Sz
i+1

)
− (S+

i S−
i+1 + S−

i S+
i+1)N

′
↑,ii+1 N

′
↓,ii+1

]
Π0 (4.12)

where one has defined the sl(2) generators S+
i = c

†
↑,ic↓,i, S−

i = c
†
↓,ic↑,i and Sz

i = 1
2(n↑,i −

n↓,i).

It is worthwhile to emphasise that the symmetry algebra of the Hubbard Hamilto-

nian (4.5) is gl(1|1) ⊕ gl(1|1) ⊕ gl(1|1) ⊕ gl(1|1), the symmetry algebra of the effective

Hamiltonian at second order of perturbation (4.12) however is enhanced to gl(2|2)⊕gl(2|2).

Indeed, the following generators

ρ+
σ =

L∑

i=1

nσ,i c
′†
↑,i c

′
↓,i , ρ−σ =

L∑

i=1

nσ,i c
′†
↓,i c′↑,i , ρz

σ = 1
2

L∑

i=1

nσ,i(n
′
↑,i − n′

↓,i) , Nσ =

L∑

i=1

nσ,i

η+
σ =

L∑

i=1

nσ,i c
′†
↑,i c

′†
↓,i , η−σ =

L∑

i=1

nσ,i c
′
↓,i c

′
↑,i , ηz

σ = 1
2

L∑

i=1

nσ,i(n
′
↑,i + n′

↓,i − 1)

φ+
στ =

L∑

i=1

nσ,i n
′
−τ,i c

′†
τ,i , φ−

στ =

L∑

i=1

nσ,i n
′
−τ,i c

′
τ,i (τ =↑, ↓)

χ+
στ =

L∑

i=1

nσ,i(1 − n′
−τ,i) c

′†
τ,i , χ−

στ =

L∑

i=1

nσ,i(1 − n′
−τ,i) c′τ,i (τ =↑, ↓) (4.13)

which generate two commuting copies of sl(2|2) (one for σ =↑ and one for σ =↓), commute

with the effective Hamiltonian (4.12). Due to the presence of the projector Π0 in H
(2)
eff , the

number operator nσ,i can be expressed as 1
2±Sz

i (+ for ↑ and − for ↓). The generators ρ±σ , ρz
σ

and η±σ , ηz
σ generate the four commuting sl(2) algebras, and the remaining non-vanishing

commutation relations are given by

[ρε
σ, φ±

στ ] = ±φ±
σ,−τ δε,∓τ [ρε

σ, χ±
στ ] = ±χ±

σ,−τ δε,∓τ (4.14)

[ρz
σ, φ±

στ ] = ±
1

2
τφ±

στ [ρz
σ, χ±

στ ] = ±
1

2
τχ±

στ (4.15)

[η∓σ , φ±
στ ] = ±τχ∓

σ,−τ [η∓σ , φ±
στ ] = ±τχ∓

σ,−τ (4.16)

[ηz
σ, φ±

στ ] = ±
1

2
φ±

στ [ηz
σ, χ±

στ ] = ±
1

2
χ±

στ (4.17)

{χ±
σ↑, χ

∓
σ↓} = −{φ±

σ↑, φ
∓
σ↓} = ρ±σ {φ±

σ↑, χ
±
σ↓} = −{χ±

σ↑, φ
±
σ↓} = η±σ (4.18)

{φ+
στ , φ−

στ} =
1

2
Nσ + ηz

σ − τρz
σ {χ+

στ , χ−
στ} =

1

2
Nσ − ηz

σ + τρz
σ (4.19)
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where σ, τ =↑, ↓ and ε = ±.

One has to add two more generators (the U(1) factors such that one gets two gl(2|2)

superalgebras), which are both represented in the present realisation by matrices propor-

tional to the unit matrix.

4.1.1 Spectrum of the Hamiltonian and comparison with N = 4-SYM

It is interesting to check if (4.12) has some relation with the dilatation operator of some

sector in N = 4-SYM. The proper candidate is su(1|2) sector whose two-site Hamiltonian is

HSYM = 1−P12 [42]. On each site, after the projection Π0, the two-site Hamiltonian (4.12)

acts on eight states

|↑〉, |↑↑′〉, |↑↓′〉, |↑↑′↓′〉 (4.20)

|↓〉, |↓↑′〉, |↓↓′〉, |↓↑′↓′〉 (4.21)

so that it is a 64 × 64 matrix. It has 32 vanishing lines and columns and the remaining

part is built of two-by-two blocks of the form

B− =

(
1 −1

−1 1

)
or B+ =

(
1 1

1 1

)
. (4.22)

This means that the eigenvalue zero is represented 48 times and the eigenvalue 2 appears

16 times.

The HSYM Hamiltonian is a 9 × 9 matrix with two empty lines and columns, three

blocks B− and a one-dimensional diagonal entry with value 2. Therefore, our Hamil-

tonian (4.12) contains the correct su(1|2) spectrum. The interpretation of states is not

obvious because the one-dimensional block with value 2 is absent and we can obtain it only

after a diagonalisation of one of the blocks (4.22) namely by mixing the states on two sites.

Moreover, the enhancement of symmetry seems to be strictly a feature of this second order

Hamiltonian and is most probably lost at higher orders.

4.2 gl(1|2) Hamiltonians

Following formula (2.27), the gl(1|2) XX-Hamiltonian can be obtained from the gl(2|2) one

by suppressing the index 1 for example (or equivalently the index 3). One gets therefore

H
gl(1|2)
XX =

L∑

i=1

{
c
′†
i c

†
i+1cic

′
i+1 + c

†
i c

′†
i+1c

′
ici+1 −

(
c
†
i ci+1 + c

†
i+1ci

)
n′

in
′
i+1

}
(4.23)

where at each site i the space of states is spanned by c
†
i |0〉, c

′†
i |0〉 and c

†
i c

′†
i |0〉. In other

words, the space of states of the gl(1|2) XX model can be obtained from the space of states

of the gl(2|2) XX model by acting with the projector

Πgl(1|2) =
L∏

i=1

(ni + n′
i − nin

′
i) (4.24)
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It can be easily verified that one has

H
gl(1|2)
XX = Πgl(1|2) H

gl(2|2)
XX Πgl(1|2) (4.25)

As illustrated in the previous example, the gl(1|2) Hubbard Hamiltonian is constructed

by coupling two copies of the XX Hamiltonian, with fermionic oscillators c
†
σ,i and cσ,i,

σ =↑, ↓. It reads therefore

H
gl(1|2)
Hub =

L∑

i=1

{ ∑

σ=↑,↓

(
c
′†
σ,ic

†
σ,i+1cσ,ic

′
σ,i+1+c

†
σ,ic

′†
σ,i+1c

′
σ,icσ,i+1−

(
c
†
σ,icσ,i+1+c

†
σ,i+1cσ,i

)
n′

σ,in
′
σ,i+1

)

+U(n′
↑,i − n↑,i − n↑,in

′
↑,i)(n

′
↓,i − n↓,i − n↓,in

′
↓,i)

}
(4.26)

the space of states at each site i being spanned by tensoring the up states |↑〉i, |↑
′〉i, |↑↑

′〉i
with the down states | ↓〉i, | ↓

′〉i, | ↓↓
′〉i, where |σ〉i ≡ c

†
σ,i|0〉i, |σ

′〉i ≡ c
′†
σ,i|0〉i and |σσ′〉i ≡

c
†
σ,ic

′†
σ,i|0〉i with σ =↑, ↓. It follows that the space of states of the gl(1|2) Hubbard model is

obtained from the space of states of the gl(2|2) Hubbard model by acting with the projector

Π̃gl(1|2) =

L∏

i=1

(n↑,i + n′
↑,i − n↑,in

′
↑,i)(n↓,i + n′

↓,i − n↓,in
′
↓,i) (4.27)

Again, one has

H
gl(1|2)
Hub = Π̃gl(1|2) H

gl(2|2)
Hub Π̃gl(1|2) (4.28)

which is a direct consequence of (4.25) and the trivial embedding of the gl(1|2) and gl(2|2)

C matrices entering the definition of the potential term.

Introducing the notation Xij =
∑

σ=↑,↓ c
†
σ,icσ,j N

′
σ,ij , see eq. (4.7), where now N ′

σ,ij =

c
′†
σ,ic

′
σ,j − n′

σ,in
′
σ,j, one has

H
gl(1|2)
Hub =

L∑

i=1

(Xi,i+1 + Xi+1,i) + U(n′
↑,i − n↑,i − n↑,in

′
↑,i)(n

′
↓,i − n↓,i − n↓,in

′
↓,i) (4.29)

At site i, among the nine possible states, four of them have an interaction energy −U and

the other five have an interaction energy +U . These four states are characterised by the

constraint n↑,i +n↓,i = 1, hence the projector Π0 in the effective Hamiltonian is again given

by (4.9) and the relations (4.10) are still satisfied. Therefore the effective Hamiltonian at

second order of perturbation reads

H
(2)
eff =−

1

2U

L∑

i=1

Π0(Xi,i+1Xi+1,i + Xi+1,iXi,i+1)Π0

=−
1

U

L∑

i=1

Π0

[(
1

2
− 2Sz

i Sz
i+1

)
− (S+

i S−
i+1 + S−

i S+
i+1) Ñ

′
↑,ii+1 Ñ

′
↓,ii+1

]
Π0 Π̃gl(1|2) (4.30)

where the ‘dressing’ factor Ñ ′
σ,ij is obtained from N ′

σ,ij by action of the projector Π̃gl(1|2):

Ñ ′
σ,ij = c

′†
σ,ic

′
σ,j + c

′†
σ,jc

′
σ,i − n′

σ,in
′
σ,j.
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Unfortunately, the symmetry of this Hamiltonian is not gl(1|2) ⊕ gl(1|2) as one might

have hoped from the gl(2|2) case, but only gl(1|1)⊕U(1)⊕gl(1|1)⊕U(1). The corresponding

bosonic generators are given by ρz
σ, ηz

σ, Nσ (with σ =↑, ↓) and the fermionic ones by φ±
↑↑

and φ±
↓↓.

The spectrum of this Hamiltonian is completely contained in the gl(2|2) case (4.12)

already described in the previous section.

4.3 gl(4|4) Hamiltonians

In the gl(4|4) case, the generators Xi;aβγ,α′β′γ′ at each site i are given by

Xi;αβγ,α′β′γ′ = (−1)([α]+[α′])([β]+[γ])+([β]+[β′])[γ] Xi;αα′ X ′
i;ββ′ X ′′

i;γγ′ (4.31)

The Xαβγ,α′β′γ′ generators are mapped on the Epq matrices with the following assignment

of indices (α, β, γ, α′, β′, γ′ = 1, 2 and p, q = 1 . . . 8):

111 → 1, 112 → 6, 121 → 7, 122 → 4, 211 → 5, 212 → 2, 221 → 3, 222 → 8 (4.32)

Again, this assignment respects the grading in the sense that if (αβγ, α′β′γ′) → (p, q),

Xαβγ,α′β′γ′ and Epq have the same grade.

Then the gl(4|4) XX Hamiltonian (2.27) reads as (the subscripts correspond to the

site indices):

H
gl(4|4)
XX =

L∑

i=1

(
c
†
i ci+1 + c

†
i+1ci + 1 − ni − ni+1

)(
c
′†
i c′i+1c

′′†
i c′′i+1 + c

′†
i+1c

′
ic

′′†
i+1c

′′
i

−n′
in

′
i+1(c

′′†
i c′′i+1 + c

′′†
i+1c

′′
i ) − n′′

i n
′′
i+1(c

′†
i c′i+1 + c

′†
i+1c

′
i)

)
(4.33)

As in the gl(2|2) case, one gets for the gl(4|4) Hubbard Hamiltonian:

H
gl(4|4)
Hub =

L∑

i=1

{ ∑

σ=↑,↓

(
c
†
σ,icσ,i+1 + c

†
σ,i+1cσ,i + 1 − nσ,i − nσ,i+1

)(
c
′†
σ,ic

′
σ,i+1c

′′†
σ,ic

′′
σ,i+1

+c
′†
σ,i+1c

′
σ,ic

′′†
σ,i+1c

′′
σ,i − n′

σ,in
′
σ,i+1(c

′′†
σ,ic

′′
σ,i+1 + c

′′†
σ,i+1c

′′
σ,i)

−n′′
σ,in

′′
σ,i+1(c

′†
σ,ic

′
σ,i+1 + c

′†
σ,i+1c

′
σ,i)

)
+ U(1 − 2n′

↑,in
′′
↑,i)(1 − 2n′

↓,in
′′
↓,i)

}
(4.34)

One observes that this Hamiltonian exhibits a ‘Russian doll’ structure. Indeed, there are

four sectors in the space of states where the gl(4|4) Hamiltonian reduces to the gl(2|2) one.

These sectors are defined respectively by n′
↑,i = n′

↓,i = 1, n′
↑,i = n′′

↓,i = 1, n′′
↑,i = n′

↓,i = 1,

n′′
↑,i = n′′

↓,i = 1 for 1 ≤ i ≤ L. The obtained Hamiltonian can be further reduced to gl(1|1)

Hamiltonian by imposing on each site nσ,i = 0 or nσ,i = 1.

5. Conclusion and perspectives

We have constructed super-Hubbard models based on the superalgebras gl(N |M), with a

special focus on models that may apply to SYM theories. We have seen that in the case of
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superalgebras, the Jordan-Wigner transformation is a local isomorphism. Therefore, the

interpretation of the models in terms of ‘electrons’ is more natural.

The symmetry superalgebra and the Hamiltonian have been given, and we performed

a perturbative calculation à la Klein and Seitz [38] for the Hamiltonians based on the

superalgebras gl(1|2) and gl(2|2).

The next step in the study of our models is the determination of the spectrum and

the Bethe equations, as they were constructed for Hubbard or generalisation, using the

algebraic Bethe ansatz [21 – 23, 43]. This is an heavy calculation which we postpone for

further publication, but from the analytical Bethe ansatz approach, one can guess their

form. In particular, as for spin chain models, one expects as many presentations of the

Bethe equations as there are inequivalent Dynkin diagrams. All these presentations should

lead to the same spectrum. For more informations, we refer to [44, 45] where similar

calculations were performed in the case of XXX super spin chains.
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